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y Hyperplane :

Point sets are the sets whose elements are points or vectors in n-
dimensional Euclidean space E". Thus the set

X= {(Xl, Xz) p X12 4 Xzz < 1} |

represents set of points in EZ lying inside a circle of unit radius with
centre at the origin.

In two dimensions, a linear equation in x4, x5, of the form
C1Xy + C;Xp = Z represents a straight line.

Similarly, in three dimensions, a linear equation in x4, Xz, X3, of the
form c;X; + €;X; + €3X3 = Z represents a plane.

Thus a line is a set of points in E? satisfying c,x; +c;%, = zand a plane
is a set of points in E* satisfying c;x; + c;x; + c3x3 =2,

The above two equations can be written in a compact formas cx =z,
where ¢ = (¢4, ¢3) or (cq, €, €3) and X = [X4, Xz] Or [X4, X2, X3] in two or
three dimensions respectively. Generalising the idea of dimensions,
we say that a set of points in n-dimensional space whose co-ordinates
satisfy the linear equation of the form

C1X1 + C2Xz + e+ CnXn = Z
is called a hyperplane for fixed values of zand ¢i =1, 2,.....,n.

The equation of the hyperplane can be put in short as ¢x =z where H
c = (c1, Cz, wor ,Cn) and X= [X3, X2...,Xn] and in which all the ¢;'s are
constants but not zero simultaneously. For different values of z, we get “;
different hyperplanes. In the notation of sets, ‘)

H={x:cx=12z} ‘11
is a hyperplane whose equation is cx=z. 1‘

NORMAL TO THE HYPERPLANE :

If z= 0, cx = 0, so that the hyperplane passes through the origin.
From this we see that the vector c is orthogonal to every vector x on
the hyperplane and this c is called the normal to the hyperplane .

Ifz # 0 and x4, X2, be two distinct points on the hyperplane cx = z then
c(X1-X2)=cX;-cXp3=2-2=0.

Thus c is orthogonal to any vector (x; - X;) on the hyperplane
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The two vectors * ﬁ are unit normals to the hyperplane.

PARALLEL HYPERPLANES :

The hyperplanes having the same unit normals are said to be parallel.
Moving a hyperplane cx = z parallel to itself is accomplished by
increasing or decreasing the value of z

Open Half Spaces :

The hyperplane cx = z in E divides whole of En into three mutually |
exclusive and collectively exhausted disjoint sets as |

X =t KicR<i],
X =fXicxsz)
and Xs={x:cx>z}.
X, ,and X3, as defined above are called open half spaces .
The hyperplanes are closed sets .

Closed Half Spaces :

The hyperplane cx = z in E" divides whole of E into three mutually
exclusive and collectively exhausted disjoint sets as

X, afx:ex<z},
X:aikex=z)
and Xi={x:ex>2}.
sets like Xa = {x:cx<sz}and Xs = {x:cx2 z } are called closed half |
spaces. ‘
The hyperplanes are closed sets .

FOR EXAMPLE :

It is easily seen that the pointx =[1,2,3, 4] lies in the open half space
of the type cx > z generated by the hyperplane |
2%, + 3Xp + 4x3 + 5X4 =7,

since 2.(1) + 3.(2) + 4.(3) + 5.(4) =40> 7.
But x= [1, 2, 3, -4] lies in the space cx < Z.

NOTE : It should be noted that in a linear programming problem
Optimize z = CX subject to Ax ($=2)b,x 20, N
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the objective function as also the constraints with the equality sign
represent hyperplanes. The constraints with signs < or 2 are the half
spaces produced by the hyperplanes with the sign of equality only.

Line Segment :

Aline in the n-dimensional Euclidean space, passing through the

points x1 and X, (X1 # x,) is defined to be the set of points
X={x:x=Axz+ (1 -A)x1,Aisreal }.

If the restriction 0 <A < 1 be imposed on A, then the point x on this line

is constrained to lie within the segment joining the points X1 and x; .

Thus a set of points in the n-dimensional Euclidean space as given by
X={x:Xx=Ax + (1-A) X1, 0 <A< 1}

is defined to be the line segment joining the points x; and X .

Hypersphere & Circle :
Consider a set of points
X={x:|x-al=¢>0}.
This set of points forms a hypersphere in E? with centre at a and
radius equal to €.

Ifn =2, thenitisacirclein E2 and

Ifn = 3, then it is a sphere in E3.

An g-neighbourhood about the pointa is defined to be the set of points
inside the hypersphere with centre a and radius € > 0 and assumed to
be very small.

Thus |x-a| <€.

Interior Point & Boundary Point : ;\

A point a is said to be an interior point of the set X if an \‘
¢ -neighbourhood about the point a contains only points of the set X.

An interior point of X must be an element of X.

A point w is a boundary point of a set X if every € -neighbourhood
about w contains points of the set and also points not of the set.
According to the definition, itis clear that a boundary point may or
may not belong to the set, but interior point must belong to the

set.
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ins the boundary points of the set.

A set is said to be closed if it conta
f the set.

On the other hand, an open set contains only interior points 0

Thus X = { (X1, X2) : X1~ + x,2 < 4 }is a closed set
and X={(XyX2) :X4" + x,2 <4} isan open set.
A set is said to be strictly bounded if there exists a positive number r
such at for every x € X. [x| <T. If each component of every point ofa

set has a lower limit, then the setis bounded from below.

Some Important Properties of Hyperplane :

i) HYPERPLANEIS A& CONVEX SET.
Proof: Letus consider the hyperplane

X={xrcx=2}.
Let x, and x; be two points in X ; then
cX;=zand CXz =Z. e (1)
Now let the point x3 be given by the convex combination of x; and x;
as
x3=Ax, + (1-A) Xz, 0 A< 1
Then
ox3 = { Axq + (1-A) X2 }
= Acxq + (1-A)cxz
=az+(1-1z  [by(1)]
=% [
5o that x3, satisfies cx = z. Thus x3 is in X and it being the convex \i
H

combination of X4
and x, in X, X is a convex set.
Thus the hyperplane cx = z is a convex set.

i) A HALF SPACE , OPEN OR CLOSED IS & CONVEX SET.

Proof: Letx; and x; be any two points of the closed half space,
His{kicx21z)
Therefore, cx; 2zand CxXz2Z ... (1)

[f0 <A< 1then,
c{Axy+ (1-A) x2 }
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= }\CX]_ + (1'}\) CX7 |
2Az+(1-A)z [by (1) ] }
2z \

Hence X;,X; €H; and 0<A<1. |
implies [ Axy + (1-A) xz ] € Hy s0 H, is Convex. ‘.

Similarly Let x; and x; be any two points of
the open half space, Hz = { x: cx < zZ} ‘\

If x;,x,€H, and 0<A< 1,

Then replacing the inequality '>' by '<'inabove itis true that

[ Axy + (1-A) x, ] € Hz So, Hz is also Convex. |

Now we are going to discuss about the process of solving L.P.P by
moving hyperplane method and all its cases. |

Solving L.P.P by Moving Hyperplane Method : "3

We alredy know thatina l.p.p the objective function and constraints U
equations represent so Solving L.P.P by Moving Hyperplane Method ;
means Solving L.P.P by Graphical Method . l\

Graphical Method : |
If the objective function be a function of two decision variables, then ‘\
the problem can easily be solved graphically. In this method, we ‘\
consider the inequations of the constraints as equations and draw the ‘
lines corresponding to these equations in a two dimensional planeand |
use the non-negativity restrictions. These lines define the region, in
general a polygon, of permissible values of the variables as indicated

by the inequations and equations of the constraints and the non-
negativity relations. This permissible region for the values of the

variables is called the feasible region or the solution space. The first

step in the graphical method is to plot the feasible solution space that
satisfies all the constraints simultaneously. Then, by trial and error

method, we find a pointin this feasible region whose co-ordinates will

give the optimal value (maximum or minimum) of the objective

function, As will be seen in the examples, this point will be a corner (or
vertex or extreme) point of the feasible region. Hence either the

extreme points need be considered as candidates for the optimal y
\i

2o Sk

P%E‘:PAL
Dhruba Chand Halder College

P.0.-D. Barasat, P.S.~Jaynagar
Dist-24 Pgs. (S) Pin-743372

LISI=Z& I’US. 1 OQ) M NITi Ywws =



Page No.: 06

by the objective function for some particular value of z, through this
region. This will be explained by the following illustrative examples.
This method is widely applied to problems with two decision
variables. As the variables are constrained to be non-negative in all L.
P. P. we need only examine the non-negative quadrant of the two
dimensional space in graphical method.

FOR EXAMPLE :

Solve the following L. P. P. Graphically , |
Maximize z = 150x + 100y |

subject to 8x + 5y < 60, :
4x + 5y <40, x,y 2 0. |
|

solution or the point can be found by translating the straight line given i
\

Solr :

The constraints are treated as equations along with the non-negativity
relations. We confine ourselves to the non-negative quadrant of the |

xy-plane and draw the |
lines given by those 12 l
equations. i(‘) |
Then the directions of the | o e |
inequalities indicate that 8 > - |
on the adjoining graph 7 / |
(Fig. 1) the region : // |
enclosed by 4 K / S |
s 1
8x + 5y = 60, S T s R
= % /// // J’\\“b
il " i ]
el 0 1 2.3%4 3 SLTURESEEE 12

will be the feasible region. \\\\Y |
All the points within this B P CFeT] |

shaded region and on
these lines will satisfy all the inequations.

For any particular value of z, the graph of the objective function
regarded as an equation is a straight line and as z varies, a family of
parallel lines is generated. A few of these lines are graphed for specific

|

[

' ' |

values of z and are shown in Fig. 1

2o
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For z = 300, the objective function is 3x + 2y = 6. \
For z = 450, the objective function is 3x + 2y = 9. )
For z = 600, the objective function is 3x + 2y = 12. ;
For z = 900, the objective function is 3x + 2y = 18. \
Considering the objective function as a straight line, called the profit \
line (in maximization problem), we see that the profit z is i
proportional to the perpendicular distance of this straight line from |
the origin. Hence the profit increases, as the profit line is translated

away from the origin.

Our aim now is to find a pointin this feasible region on the xy-plane

which will give the maximum value of z. In order to find this point, we
draw the profit line corresponding to some numerical value of z and

move this line away from the origin, always being parallel to itself,

until it contains only one point of the feasible region, whose corner

points are (0, 0), (7.5,0), (0, 8) and (5, 4).

We have drawn the first line corresponding to z = 300. Now, by

translating this line, parallel to itself away from the origin over the

shaded region, we find that the point with co-ordinates (5, 4) is the

last point in the feasible region which the moving line (represented by

the dotted line) encounters. This is a corner of the quadrilateral

indicating the feasible region. It is called the maximizing point and by

substituting its co-ordinates into the relation 150x+100y =z, the

maximum profit is obtained as 1150.
Thus the optiml solution of the L.P.P is x= 5,y=4%4,Zma

< =150

Nature of The Solution of an L.P.P:

feasible solution, presents no difficulty. The
occurs if the number of equations |
(or inequations) in the constraints be at least equal to the number of |
variables. If the solution be feasible, then it is the optimal solution; if it \L
is not, the problem has no solution. A problem of this kind even if ‘
there be a solution, is of no interest to us, since there is only one ‘Q
feasible solution and there is nothing to check for its optimality. |

A problem, having a single
possibility of its existence

Thus a linear programming problem may have

(i) A UNIQUE AND FINITE OPTIMAL SOLUTION

(i) AN INFINITE NUMBER OF OPTIMAL SOLUTIONS
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(D) AN UNROUNDED SOLUTION
(V) NO SOLUTION
(V) A UNIQUE ROLUTION FEARINLE OR NOT,

Linear programming problems invelving thiee vartables can also be
presented geometrically but their raphical solution s very difficult,
The feasible region of solution in this case will be 4 three dimensional
fgure enclosed by the planes represented by the constraints regarded
ax equations, This figure is called a polvhedron, The objective function
i this case will represent a plane for certain value of v, The plane,
representing the optimal value of ¢ which has at least one point in
common with the region of feasible solutions, gives the optimal value
for the objective function, The point or points from the feasible region
of solution which lie on the plane represented by the objective
fanction for optimal 2 are optimal solutions,

The physical properties of the problems require that the values of the
variables be integers, But this is not guaranteed except in spectal
cases. The possible remedy in such cases is to round the continuous
optimal solutions,

Examples of all Cases :
(i) A Unique and Finite Optimal Solution :

If we have a function to minimize rather than to maximize, in that
case the cost line (in minimization problem) as given by the objective
function is to be translated towards the origin, This case is given as an
example below,

Minimize 2 = 3x + by
subject to 2x+3y212,
“X+ys3,
X s4 and y2 23,

Sol:

In Fig, 2, the shaded region bounded by the constraint e ‘
quations is th
feasible region as indicated by the inequality signs, The corner pointse

of the feasible region are (}. 3), (4, 3), (4, 7) and ( % . -? ). The cost line,
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as given by the objective function on the assumption of z = 30, is given
by the dotted line in the figure. As this is the problem of minimization,
the cost line is translated towards the origin and the cost function
takes its minimum value at one corner point of the feasible region

given by x=% , y=3.

Y
9
84 Vi
T Z
e X
g
-+ <
5 I
41 a3
Ay=3
2T \’r* \\“\\1
R
1T \\/\)
-X | ¢ | } | I |

F X

) TSR 1 | {%
EIE RO 2 14 56 7 89

L
10 11

Fig. 2

The minimum value of the objective function is 19.5 there.

Thus the optimal solution of the L. P. P. is
x=§ , y=3 and Zmin = 19.5

In the above two problems, we see that the L. P. P. has a unique \

optimal solution .

(ii) An Infinite Number of Optimal Solutions : |

A special case occurs when the objective function for some
particular value of z gives a straight line parallel to one given by one of
the constraints. This case is discussed below with an example.

Minimize z = x; + X,
subject to 5x1 + 9x; < 45,
X1+ Xz 2 2,
X4 and xq,x; 20,

g U

g eV
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Sol:

We draw the straight lines given by the constraints taken as ‘!
equations. Then the directions of the inequalities and the non- ‘1
negativity restrictions determine the region of the feasible solution
as indicated in Fig. 3 by the shaded region. The corner points of the

feasible region are (0, 2), (2, 0), (9, 0), (2, 4) and (0, 4).
As is evident from the nature |

of the line represented by the X, |
objective function with z = 4, 6+ 1
the minimum value of z will be 5 ~\ S

2z I

2 and all the points on the
straight line x; + Xz = 2
intercepted between the axes
in the first quadrant give this
value.

This is because the line given
by the objective function for

z = 4 when moved parallel to
itself towards the origin (as this is a case of minimization) coincides

with the boundary line x; + xz = 2 of the feasible region and points
corresponding to more than one corner of the feasible region give the
optimum value. The problem has thus an infinite number of solutions i\
(optimal) as any point on the line segment joining the corners
intercepted by x; + X2 = 2,%x,=0,%x2=0 isan optimal solution. |
Thus here zmin = 2, but the number of solutions is infinite. :
When such a situation exists, we say that there are alternative }
|

optimal solutions.

(iii) An Unbounded Solution :

Sometimes it may so happen that the feasible region is |
unbounded in one direction and it does not form a polygon. In such |

cases, the line given by the objective function can be moved away |

indefinitely with a hope to contain only one point of the feasible “

region, but in vain.
The next example will present such a problem,

sl

-—
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SUbjeCt to Xq1-X22 0
- X1+3x253
and X1,X220

Maximize z = 3x; + 4x,

Sol*: Asbefore, we draw the straight lines given by the constraints
considered as equations. The directions of the inequalities along with
the non-negativity relations give the feasible region as shown. in Fig. 4.
In this case, the feasible region is not a closed polygon. The profit line
is shown in the diagram with dots for z = 12. Now this being a case of
maximization, the profit line is moved away indefinitely from the
origin parallel to itself and it is seen that there is no finite maximum
value of within the feasible region. When the value of z or in other
words the value of the objective function can be increased (or
decreased in the case of minimization) indefinitely, the problem is said

to have an unbounded solution .

1 1 T T

-3 -2 -1 B 4 56 .78

1

Fig. 4

NOTE :Inthe practical situation, it cannot be expected to get an
L. P. P. with unbounded solution as this will imply the

possibility of infinite profit or loss .

Unbounded feasible region does not necessarily imply that there will
be no finite optimal solution of the problem as will be evident from the

next example.
Maximize z = 2x, - X,
subject to X1-%X220
X;£3
and xi1,x;20

T\
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r

Sol: X,
In the adjoining diagram (Fig. 5), the 64 \\\ Cl(ll
feasible region for the solution of the 37
problem is unbounded as given by 5 ‘\ 2 e |
the constraints but the profit line as 4 : m/ ‘
represented by the dots forz =1, «,,\/ |
when moved parallel to itself, away 37

from the origin will contain the 2 \ \\ 3,2) |
corner point (3, 2) only on it \\\\ |
ultimately. 1 \\\ |
Thus the optimal solution is x; = 3, 0 \'\ } — X |
x, = 2 and the finite optimal value of /‘1 R i

the objective function is given by Rl

Zmax = 4. 27T

X, @

We have seen before that the set of variables which optimizes the
objective function does not need to be unique. Now cases may appear
in practice in which although the objective function has a finite
optimal value, there are solutions giving this optimal value for which
we get arbitrarily large values of the variables. This is illustrated in the

next example.

Maximize z = - x; + 3X;

subject to X1 -X22-1
= 0.5X1 o+ 1.5X2 <8
and xi1,x,20

Sol: x

The dotted line in the diagram ( Fig 6 ) gives the profit line
corresponding to z = 3 and it is parallel to the edge of the infinite ,i
|

feasible region which is given by - 0.5x1 + 1.5x, = 3 and coincides with
it whenz = 6.

The maximum value of the objective function is thus 6. Again any
point (x1, x2) lying on the edge of the feasible region (given by the
constraint 0.5x1 + 1.5x; < 3) which extends to infinity, gives z = 6 and

is therefore an optimal solution..
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X,

completely in order as there are

The problem cannot be said to be
lues of the variables which give the

solutions with arbitrarily large va
optimal value of z.

No Feasible Solution :

(iv)

So far we discussed problems for which we geta feasible region of
solution. But there may be problems in which no feasible region of
solution will be obtained. This happens when the given constraints are
inconsistent. We illustrate this point below.

Maximize z = 2x; - 3X2
X1+ X< 2
2Xq +2X, < 8
and x1,x220

subject to

Solr : As before, we draw straight lines given by the constraints
considered as equations. The possible feasible region is

shown in the diagram (Fig. 7) by the direction of the inequalities. As is
obvious from the diagram due to the inconsistency of the constraints

no feasible solution is possible and hence no optimal solution.
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# i

| The constraint set is empty in this case.

XZ
e i |
|
4 1 |
3'“3} o ;
a % ‘
2 B
i 3 |
1Y e i
0 '-'9’ ety
0 i e 6
e

There may be problems in which the constraints are consistent yet

there may not be any feasible solution as no point satisfy
simultaneously the constraints and the non-negativity restrictions.

This is illustrated in the next X
example. 4 15
Maximize z =X; + X2 L -
subject to X1-X222
Iy« X5 S+2 TR
and el B — ——t—t UG
& 5 ag -3 2 o112 XN |
Sol» : Any pointin the 13
shaded region satisfy %
the two constraints, but no O o $i3
T . % /
point in the shaded region as "y y > ‘,
given by the two constraints / o 1 |
satisfy the non-negativity Ly / -5 |
restrictions (xy, Xz > 0) and o | - |
hence there is no feasible |
solution of the problem. =7
(Fig. 8.) X, ]'—fxg/cf |

Q.
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Ks?nificance of Graphical Method in L.P.P :

followings ,

e The potentiality of Graphical Method in Linear Programming as a tool
for solving problems by Graphically is substantial. It is used to solve
problems of procurement of raw materials in changing situations,
production planning, assembly line balancing and many other |
problems of operation management through simple graphs. In the
sphere of marketing, Linear Programming is used to solve problems of
market mix, location of warehouses, blending and many other day to
day problems associated with marketing. In the area of finance, Linear
Programming technique is used in financing, profit planning and
investment. In short it is an easiest visual representation of L.pp

e In addition to the above areas of its application, Linear Programming is
used extensively in Government and public-services, diet-mix in
hospitals, educational planning, air-line and crew scheduling and in
food shipping plan. Itis used in optimal routing of message
communication network. Many other problem areas can be mentioned
where the technique of Linear Programming is effectively used.
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